
ABC4.IO, Post Quantum Cryptography Message Gateway, p. 1, 2025-08-15.

© ABC4.IO Chile SpA 2025

ABC4.IO

Post Quantum Cryptography Message Gateway

Peter Waher

ABC4.IO Chile SpA, Fransisco Soza Cousiño 610, Concón, V, Chile
peter.waher@ieee.org

Abstract. This paper describes how the ABC4.IO service can be used to set up

a secure Message Gateway between two peers using Post-Quantum Cryptog-

raphy (PQC) and End-to-End Encrypted messages. If the network allows, peers

will connect directly, otherwise one or two message brokers will connect the

peers. PQC is achieved using ML-KEM (FIPS 203) and ML-DSA (FIPS 204).

Keywords: Decentralization, Interoperability, Security, Transparency, IEEE

P1451.99.

1 Introduction

ABC4.IO® is a service that dynamically creates APIs and interfaces based on

signed smart contracts1. It can be hosted in different environments depending on how

it is used. It is built on-top of the IoT Gateway™2, which provides architecture for

secure communication using End-to-End Encryption and Peer-to-Peer communication

for Smart City applications and infrastructure components. As the IoT Gateway sup-

ports the end-to-end encryption interfaces published by the Neuro-Foundation3, it

supports post-quantum cryptography algorithms such as ML-KEM4 for post-quantum

protected key exchange and ML-DSA5 for post-quantum protected digital signatures.

All standardized models6 are supported, providing the gateway with 128-, 192- and

256-bit security strength (or security categories 1, 3 and 5) using post-quantum cryp-

tography.

As such, ABC4.IO provides an additional level of programmatic security to exist-

ing services being hosted in the same environment. If ABC4.IO is hosted alone on the

IoT Gateway, it can run as a simple message gateway. If it is run together with

LILS.IS7, which provides a secure decentralized social network for human-to-human

communication, it adds a component of secure machine-to-machine communication

using the same infrastructure. If running on the TAG Neuron® or Neuro-Ledger®8, it

provides a mechanism to publish secure public APIs using smart contracts.

In the first two examples, ABC4.IO runs in local area networks behind firewalls,

and can thus be used to interconnect local services in different domains in a secure

manner. In the third example, ABC4.IO can run on a public node publishing its ser-

vices on the Internet.

mailto:peter.waher@ieee.org

2 PQC Demo Setup

A simple demonstration has been created to show how PQC-protected messaging

works. You can run this demo by following the subsequent steps.

Establishing a secure connection for secure Human Messaging

For the purposes of creating a Post-Quantum Cryptography protected message

gateway, where messages from one local area network are securely transported to a

device in another local area network, we will use ABC4.IO in one of the first two

installations. The simplest is by downloading Lil’Sis’® from LILS.IS, as it comes

with a simple installer for Windows9 which includes ABC4.IO as an embedded ser-

vice.

After installing Lil’Sis’, including ABC4.IO, on two local machines, we will con-

nect them by creating a “friendship” between the two machines. Each instance of

Lil’Sis’ will connect securely to the XMPP network10. This means they use XMPP

brokers on the Internet to relay instant messages between each other. Each client con-

nects outwards to their broker. You can select one of the featured brokers shown dur-

ing the configuration. You can also install and host one of your own11. The brokers

interoperate to relay messages across domains. This is often referred to as federation.

It means clients can reside securely, each behind a separate firewall controlled locally.

XMPP brokers authenticate all participants, and forward address information in all

messages, minimizing risk of spoofing. Ubiquitous encryption makes sure all Internet

connections are encrypted.

Fig. 1. XMPP: Federated communication network

Even though XMPP is a quite secure communication protocol over the Internet by

itself, we will consider it an open protocol. It solves a network topology problem,

allowing clients to communicate with each other in real-time even though they reside

behind separate firewalls (if Internet connectivity exists). We use End-to-End encryp-

tion to ensure end-to-end security of messages. Transport encryption only protects

connections. When a message is transported from one point to another it typically

needs to be passed over various connections. In each jump, from one connection to

another, the message will be decrypted and re-encrypted for the next leg. This creates

a vulnerability, allowing operators of each node to access the message, unless it is

end-to-end encrypted. End-to-end encryption encrypts the entire message by itself,

before sending it on the encrypted transport connection. This two-tier encryption en-

sures only the intended recipient can decrypt the message. The recipient can also vali-

date that it was indeed the proposed sender that sent the message.

Once a client can connect to the XMPP network, it will receive a public XMPP

Address called a Bare JID, which looks like an e-mail address. Once both installations

have such an XMPP address, each one can “subscribe to the presence of the other”.

This is an XMPP operation, and establishes a relationship between the two, if both

accept the other’s request. Once accepted, the requesting party will learn of the online

presence of the accepting party. In this online presence, public keys for End-to-End

encryption will be present. These are required to communicate using End-to-End

encryption. So, both parties will need to accept each other’s presence, for end-to-end

encryption to be established.

During the installation and configuration of Lil’Sis’, you will get the XMPP Bare

JID when connecting to the network. If you lose this information, you can easily find

it again, by going selecting Contacts from the main menu, and Connections. At the

bottom of the page that appears, you can see your address. You can also type in the

Bare JID of the other party and press Connect to send a presence subscription to that

address. The request will appear on the page as well, at the top, where you get a

chance to accept it. Once the connection is established, it will appear in the list of

contacts.

Fig. 2. Adding a connection

Viewing actual real-time communication

The IoT Gateway on which Lil’Sis’ runs allows you to view actual XMPP com-

munications in real-time. This allows you to ensure communications are indeed end-

to-end encrypted using PQC.

First, when opening a chat with a connection, the left-hand part of the view shows

if the connection is secure or not. A lock symbol indicates the connection is encrypted

end-to-end. A flash symbol indicates the connection is peer-to-peer, i.e. there’s a con-

nection between the peers that is serverless (i.e. does not pass brokers). This second

state is not required for end-to-end encryption but may be of interest. While end-to-

end encryption will always be possible, peer-to-peer connectivity will only be availa-

ble if the network permits.

To view the actual communication, select Settings from the main menu, and then

XMPP. In the view that appears, find the button named Sniffer. It allows you to sniff

on your own communication. When clicked, a new tab is displayed showing commu-

nication from your end, in real-time. End-to-end communication is indicated by ele-

ments as described by Neuro-Foundation interfaces for End-to-End Encryption12 .

Post-quantum cryptography is indicated using references to Module Lattice ciphers

for 128-, 192- or 256-bit security strength respectively, with the names ml128,

ml192 and ml256. White background signifies information sent. Blue background

(unless selection) means information received. Green background is an informational

note for you, i.e. in the example below, it contains the message before being E2E-

encrypted. Red background shows errors.

Fig. 3. A sniffed E2E-Encrypted Message using ML-KEM-512 and ML-DSA-44 (ml128)

Establishing a PQC channel for machine-to-machine messaging

In the previous steps a secure connection was established between the two Lil’Sis’

installations allowing for secure communication between two human actors. A meth-

od was presented whereby you could verify the security of the communication, verify-

ing that it is indeed end-to-end encrypted using PQC. In this step, we will add a sim-

ple machine-to-machine message gateway between the two endpoints. We will do this

by adding a distributed API using ABC4.IO.

A distributed API using ABC4.IO is an API that is instantiated in multiple hosts at

once using a single smart contract definition. Different parts may be instantiated on

different hosts, for different purposes, using a single document. In the following ex-

ample, we will instantiate on one of the hosts a simple receiving REST API that re-

ceives incoming messages. On the other host an XMPP API will be created that re-

ceives messages from the first host. The first host ensures the messages are sent using

End-to-End encrypted communication using PQC. If the second host can decrypt an

incoming message, and it originates from the first host, it will save the message unen-

crypted to a folder on the machine. A very simple PQC-encrypted message gateway.

An ABC4.IO distributed API can be instantiated either via a smart contract that is

signed by the parties involved, or using a definition file in the dedicated ABC4.IO

Definitions folder for each participant. This first method is the preferred method

in production environments. The second method is the simplest method used during

development of ABC4.IO decentralized APIs. For the purposes of this demo, we will

use the second method. Download the following file to a folder on your local ma-

chine:

https://abc4.io/Downloads/DemoPqcGateway.xml

Once downloaded, edit the file, and enter the Bare JID of the first gateway (first

Lil’Sis’ installation) into the GatewayA_BareJID resource field. Likewise, enter

the Bare JID of the second gateway (second Lil’Sis’ installation) into the Gate-

wayB_BareJID resource field. Enter the name of the folder where files should be

created in the GatewayB_FileFolder resource field. The local resource name of

the REST API is controlled by setting the GatewayA_WebFolder resource param-

eter. Once these edits have been saved, copy the file into the ABC4.IO definitions

folders on both machines. By default13, this should be: C:\ProgramData\IoT

Gateway\Definitions). Once the files have been copied, and no errors are

found in the files, the APIs will be automatically created. You can open the real-time

event log view if you are interested in monitoring what is happening under the hood14.

Using REST API to send PQC encrypted messages

Assuming that GatewayA_WebFolder is set to PqcDemo, you can access the

REST API part of the decentralized API via /PqcDemo/Send on the domain or

machine defined by GatewayA_BareJID (which can be a domain if run on a Neu-

ron, or a Bare JID if run on Lil’Sis’). The resource is protected using the following

two instructions in the definitions file. The first controls authentication:

<BasicAuthentication requireEncryption="true"

 minStrength="128"/>

If you cannot access the endpoint using HTTPS, you need to set the requireEn-

cryption to false. Note however, that BASIC authentication sends passwords in

the clear, and should not be used if connection is not encrypted and should be avoided

in production. ABC4.IO provides other better mechanisms for these purposes (such as

Bearer token using JWT). But, for the purposes of the demo, BASIC authentication is

simple to use and is available in most web clients.

The second instruction controls required privileges:

<RequiredPrivilege>ABC4IO.PQC.Send</RequiredPrivilege>

Once access instructions and privileges are defined, you need to ensure a corre-

sponding user with corresponding privileges is defined. You define users and roles

and their corresponding privileges under the Security menu in /Admin.md on the

domain (Fig 4.). Once a user with the corresponding privileges is available, you can

use the REST API. For the purposes of this demo, we illustrate this using Postman, a

popular development tool that allows the user to make requests to REST APIs (Fig

5.). Press the Send button, to execute the call (Fig 5). The XML message included

will be PQC-encrypted and sent to the second endpoint, which will save the file.

Make sure to check the communication to validate the communication is End-to-End

encrypted using the appropriate PQC algorithm. Finally, check the reception folder

(Fig. 6) for the file. PQC encryption not only encrypts the message but signs it also,

ensuring the immutability of the contents during the transfer.

Fig. 4. Security Menu

Fig. 5. Postman interface for testing REST API

Fig. 6. The reception folder where transferred files will be stored.

3 Understanding the Decentralized API

The decentralized API created in this demo is based on a single XML document, or

API description. The XML document can either be provided to the gateway as a file

stored in the Definitions folder or be made available by signing a smart contract

containing the file as its machine-readable payload. The XML document needs to

comply with the ABC4.IO decentralized API XML schema, which can be download-

ed from:

http://abc4.io/v1.0.xsd

Make sure to review this XML schema to learn what actions and control structures

are available. By using a good XML editor, with XML schema support and code in-

http://abc4.io/v1.0.xsd

sight as well as code completion is recommended. It will make your task of creating

decentralized APIs much easier.

We will use the DemoPqcGateway.xml file, going through some important

steps, to explain how the decentralized API is built. Changing the file and re-saving it

will automatically take the old API down and bring the new API up. Removing the

file will simply take the API down, in real-time. So, feel free to experiment with the

file and see how the changes affect the operation of the decentralized API. Make sure

to always have the event log open, to be able to fetch any errors introduced, and re-

view the functioning of the API. Also make sure to log entries into the event log for

debug purposes. You can remove these later when the API is done. Also note that

white space has been inserted into the XML below, for readability purposes only. In

the original file such white space is not available.

Entities

Each participant in the decentralized API is called an Entity. The root of the docu-

ment is the <Entities> element.

<Entities xmlns="http://abc4.io/v1.0.xsd">

At the top, some common resources may be defined. This may include actual com-

putational resources. It may also include constant definitions that will be reused

throughout or API description.

<Resources>

 <ConstantString id="GatewayA_BareJID">

 peterdev@waher.se</ConstantString>

 <ConstantString id="GatewayB_BareJID">

 peterdev@waher.se</ConstantString>

 <ConstantString id="GatewayA_WebFolder">

 PqcDemo</ConstantString>

 <ConstantString id="GatewayB_FileFolder">

 PqcDemo</ConstantString>

</Resources>

These are the strings you had to change during the setup of the demo. The strings

will identify the gateways involved and the roles they play.

Setting up a Web Server

On the entity we call Gateway A, we want to define a web resource called

/PqcDemo/Send. This is a straightforward procedure. We simply define the entity,

reference the web server inside it, define a web folder and then the resource we will

attach logic to, as follows:

mailto:peterdev@waher.se%3c/ConstantString

<Entity domain="{GatewayA_BareJID}" role="GatewayA">

 <WebServer>

 <Folder name="{GatewayA_WebFolder}">

 <Resource name="Send"

 endpointVariable="Endpoint">

Defining web pages

We can return web content from our resources, by responding to the HTTP GET

method. In the file we define this as follows. For each method we define support for,

we associate with an Action that will be executed if validation succeeds. In this case,

we will simply return documentation on how the Send resource works.

<GET defaultAction="ReturnSendDoc"/>

Actions are defined later in the document under the <Actions> element. We can

return a simple web page, using Markdown15, embedded as a CDATA construct, to

avoid confusion with the encompassing XML document. The Markdown (as well as

other sections of the API definition document) we use script16 to provide logic.

<Action id="ReturnSendDoc">

 <Return>

 <Markdown parseMeta="true">

 <![CDATA[Master: Master.md

========================

Send

Send a `POST` with XML data (`Content-Type: applicat-

ion/xml`) to `/{{GatewayA_WebFolder}}/Send` to send an

End-to-End encrypted XML document from

`{{GatewayA_BareJID}}` to `{{GatewayB_BareJID}}`.

]]>

 </Markdown>

 </Return>

</Action>

Once the page is defined and the definition file is saved, you can view the page in

the browser (Fig. 7). The file Master.md controls the overall look and feel, theme

and style usage, main menu, etc. Here, the default Master.md is used, provided by

the ABC4.IO service.

Fig. 7. Simple web page created by the decentralized API

Defining a POST REST web service

A POST REST API web service is added by adding a POST method definition, to-

gether with information about how to authenticate the client and validate the request.

<POST>

 <BasicAuthentication requireEncryption="true"

 minStrength="128"/>

 <Content type="application/xml"

 action="ForwardMessage"

 variable="Message"

 requestVariable="Request">

 <RequiredPrivilege>

 ABC4IO.PQC.Send</RequiredPrivilege>

 <ValidationScript><![CDATA[

 MsgId:=select /default:PqcDemo/default:MsgId

 MsgId from Message

 ?? BadRequest("Missing Message ID");

 if MsgId not like "[a-zA-Z0-9_]+" then

 BadRequest("Message ID must be alpha numeric " +

 "(underscores permitted).");

]]></ValidationScript>

 </Content>

</POST>

We must map the representation of the data in the request to the internal structure

we will use in the action script logic. Each Internet Content-Type to be supported

needs its own <Content> element definition. While we will only use XML repre-

sentation of the content sent to the web service, you could easily extend the web ser-

vice to support other types of content as well.

Each Content-Type also defines required privileges by the authenticated user, and

has its own validation script, used to validate the input before executing the associated

action ForwardMessage. Note that it is easy to use XPATH directly inside script17.

 Logging information to event log and Neuro-Ledger

For transparency reasons, or for purposes of debugging, you can log information to

the internal event log. You can also perform custom logging to the Neuro-Ledger, if

running on a Neuron. If you run the gateway using Lil’Sis’, you only have access to a

local event log, not the Neuro-Ledger. Any ledger entry instructions will be ignored.

To log information to the event log, use any of the <Log*> action elements. The

example logs the reception of a successful REST API call to forward a message:

<Action id="ForwardMessage">

 <LogDebug body="Message received.">

 <Tag key="Source">{Endpoint}</Tag>

 <Tag key="MsgId">{MsgId}</Tag>

 </LogDebug>

Notice script is embedded in the element instructions between curly braces. Some-

times, when the element explicitly refers to script, such curly braces are not neces-

sary. In the example, information extracted from the content in the call is logged to

the event log, so you can match the event with the REST API call that was made.

An entry in a Neuro-Ledger can likewise be made using any of the entry elements,

as follows:

<NewEntry archivingTime="365"

 collection="PqcDemo"

 mirrorInDatabase="true"

 objectType="MessageReceived">

 <Property name="MessageId">

 <Variable>MsgId</Variable>

 </Property>

 <Property name="Source">

 <Variable>Endpoint</Variable>

 </Property>

</NewEntry>

Sending a PQC-encrypted XMPP message

We can use the XMPP connection available by the hosting environment to easily

send XMPP messages or make XMPP information query requests. Lil’Sis’ is already

connected to the XMPP network, so to send an XMPP message using the Lil’Sis’

account, we simply execute the following instruction:

<Message to="{FullJid(GatewayB_BareJID)}"

 qos="Assured"

 e2ee="AssertE2EPQC">

 <Body>

 <Script><![CDATA[

 <Message

xmlns=https://abc4.io/Schema/DemoPqcGateway.xsd

 source=Endpoint

 msgId=MsgId>

 <[Message]>

 </Message>

]]></Script>

 </Body>

</Message>

The qos attribute determines the Quality of Service we want to use. The As-

sured service is the highest. It ensures that the message is delivered exactly once,

even if retries are required to propagate the message. The e2ee attribute is set to

AssertE2EPQC, which means that the message will only be sent if End-to-End

encryption can be established using Post-Quantum Cryptography. The body contains

script, embedded in a CDATA construct to avoid confusion with the XML document.

The script dynamically generates the XML document that is encrypted and sent over

the XMPP network. Note that it is easy to work with dynamic XML in script18.

Setting up an XMPP message handler

Setting up an XMPP message handler is like setting up a web server resource. We

have to specify the entity that will set up the message handler. Instead of a web folder

we define a namespace. We then define the message handler, and any validation

script used to validate the received information. There is no client authentication nec-

essary, since all participants in the XMPP network are already authenticated, and their

identities are forwarded in all messages. This includes the broker identities, and the

client identities associated with each broker. We will use this information to validate

the source of the information, and ignore any message received from anyone other

that Gateway A.

<Entity domain="{GatewayB_BareJID}"

 role="GatewayB">

https://abc4.io/Schema/DemoPqcGateway.xsd

 <XmppServer>

 <Namespace

ns="https://abc4.io/Schema/DemoPqcGateway.xsd">

 <MessageHandler name="Message"

 variable="Message"

 action="SaveMessage"

 endpointVariable="Endpoint">

 <ValidationScript><![CDATA[

 if BareJid(Endpoint)!=GatewayA_BareJID then

 Forbidden("Message source invalid.");

 MsgId:=select /default:Message/@msgId

 from Message

 ?? BadRequest("Missing Message ID");

 Source:=select /default:Message/@source

 from Message

 ?? BadRequest("Missing Source");

 if MsgId not like "[a-zA-Z0-9_]+" then

 BadRequest("Message ID must be alpha "+

 "numeric (underscores permitted).");

 if empty(Source) then

 BadRequest("Empty source.");

]]></ValidationScript>

 </MessageHandler>

 </Namespace>

Saving a file to a local folder

There is no action element that specifically saves contents to a file on the local ma-

chine. So, we need to use script to accomplish this. The script engine can interact with

the .NET Core environment hosting the IoT Gateway on which the ABC4.IO service

runs. We can use this to call .NET Core methods to save the file in the corresponding

folder. To accomplish this, we do as follows in the corresponding action that gets

executed when a valid XMPP message is received:

<Script><![CDATA[

 Folder:=System.IO.Path.Combine(

 Waher.IoTGateway.Gateway.AppDataFolder,

 GatewayA_WebFolder);

 if !System.IO.Directory.Exists(Folder) then

 System.IO.Directory.CreateDirectory(Folder);

 FileName:=System.IO.Path.Combine(Folder,

 MsgId+".xml");

 Body:=select /default:Message/* from Message;

 SaveFile(Body,FileName);

]]></Script>

4 Summary

The ABC4.IO service can be used to easily create distributed APIs using a single

source document for all entities involved in the distributed environment. Since the

ABC4.IO service can be hosted on the IoT Gateway and Lil’Sis, or Neuron environ-

ments, all supporting End-to-End encrypted communications using Post-Quantum

Cryptography, the ABC4.IO can be used to easily set up a PQC message gateway

between participants in different networks across the Internet. While the simple ex-

ample described in this document showed how to map a REST API to files being

saved on another machine, the ABC4.IO definition is sufficiently flexible to allow for

most types of integrations on either end of the gateway.

For more information, see https://abc4.io/. You can also return any feed-

back and request more information at https://abc4.io/Feedback.md.

1 ABC4.IO, Executive Summary, 2021-08-25,

https://abc4.io/doc/ABC4.IO,%20Executive%20Summary.pdf
2 IoT Gateway repository:

https://github.com/PeterWaher/IoTGateway
3 https://neuro-

foundation.io/E2E.md#postQuantumCryptographyPqc
4 ML-KEM standardized by NIST in FIPS 203.
5 ML-DSA standardized by NIST in FIPS 204.
6 Supported module lattice algorithm models include ML-KEM-512, ML-KEM-

768, ML-KEM-1024, ML-DSA-44, ML-DSA-65 and ML-DSA-87.
7 Lil’Sis’ secure decentralized social network: https://lils.is/
8 On the TAG Neuron and Neuro-Ledger with associated technologies:

https://www.neuro-tech.io/
9 Download Lil’Sis’: https://lils.is/Downloads/LilSisSetup.exe
10 XMPP is an open, flexible and secure protocol originally defined for instant

messaging. It is standardized by the IETF in RFCs 6120, 6121 and 6122.
11 Download and Install the Tag Neuron XMPP broker:

https://lab.tagroot.io/Documentation/Neuron/InstallBroker

.md
12 https://neuro-foundation.io/E2E.md
13 The default instance of IoT Gateway stores program data in the folder

C:\ProgramData\IoT Gateway\. Multiple instances can be installed on the

same machine. Each instance is identified by an instance name. The instance named

ABC, stores its program data in C:\ProgramData\IoT Gateway ABC\.
14 The event log view can typically be accessed via the default URL:

http://localhost/Sniffers/EventLog.md.
15 Markdown reference syntax: https://abc4.io/Markdown.md
16 Script reference syntax: https://abc4.io/Script.md
17 On XPATH in script: https://abc4.io/Script.md#selectFromXml
18 On XML in script: https://abc4.io/Script.md#xml

https://abc4.io/
https://www.neuro-tech.io/

